Proteomics is the study of protein expression in living systems, considered in a functional context. This allows us to better understand how protein networks become dysfunctional, which in turn enables the manipulation of protein functions and cellular phenotypes through environmental or genetic intervention, or the use of drug treatment. This unit covers the principles and applications of proteomic techniques, and assumes basic knowledge of protein electrophoresis and mass spectrometry. Topics include: a detailed study of advanced techniques, instrumentation and protein identification software in mass spectrometry; two-dimensional differential gel electrophoresis; label-free and isotope-labelling quantitation in proteomics; application of different types of peptide- and protein-based shotgun proteomics approaches; multiplexed reaction monitoring: data independent acquisition; and characterisation of protein post-translational modifications including phosphorylation and glycosylation. Students must attend a compulsory one week laboratory session during the session break.